p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24⋊1D4, C25.11C22, C24.177C23, C22⋊C4⋊5D4, (C22×C4)⋊3D4, C24⋊3C4⋊9C2, C2.16C2≀C22, C23⋊3D4⋊2C2, C23.583(C2×D4), C22.40C22≀C2, C23.9D4⋊11C2, C23.126(C4○D4), C22.64(C4⋊D4), C22.11(C4⋊1D4), C2.26(C23⋊2D4), (C22×D4).70C22, (C2×C23⋊C4)⋊8C2, (C2×C22≀C2)⋊1C2, (C2×C22⋊C4).102C22, SmallGroup(128,753)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, faf=ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 896 in 319 conjugacy classes, 46 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C22×D4, C25, C23.9D4, C24⋊3C4, C2×C23⋊C4, C2×C22≀C2, C23⋊3D4, C24⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C23⋊2D4, C2≀C22, C24⋊D4
Character table of C24⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
(1 6)(2 7)(3 14)(4 15)(5 9)(8 12)(10 16)(11 13)
(1 3)(2 9)(4 11)(5 7)(6 14)(8 16)(10 12)(13 15)
(1 3)(2 4)(5 13)(6 14)(7 15)(8 16)(9 11)(10 12)
(1 10)(2 11)(3 12)(4 9)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(2 4)(5 15)(6 14)(7 13)(8 16)(9 11)
G:=sub<Sym(16)| (1,6)(2,7)(3,14)(4,15)(5,9)(8,12)(10,16)(11,13), (1,3)(2,9)(4,11)(5,7)(6,14)(8,16)(10,12)(13,15), (1,3)(2,4)(5,13)(6,14)(7,15)(8,16)(9,11)(10,12), (1,10)(2,11)(3,12)(4,9)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,4)(5,15)(6,14)(7,13)(8,16)(9,11)>;
G:=Group( (1,6)(2,7)(3,14)(4,15)(5,9)(8,12)(10,16)(11,13), (1,3)(2,9)(4,11)(5,7)(6,14)(8,16)(10,12)(13,15), (1,3)(2,4)(5,13)(6,14)(7,15)(8,16)(9,11)(10,12), (1,10)(2,11)(3,12)(4,9)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,4)(5,15)(6,14)(7,13)(8,16)(9,11) );
G=PermutationGroup([[(1,6),(2,7),(3,14),(4,15),(5,9),(8,12),(10,16),(11,13)], [(1,3),(2,9),(4,11),(5,7),(6,14),(8,16),(10,12),(13,15)], [(1,3),(2,4),(5,13),(6,14),(7,15),(8,16),(9,11),(10,12)], [(1,10),(2,11),(3,12),(4,9),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(2,4),(5,15),(6,14),(7,13),(8,16),(9,11)]])
G:=TransitiveGroup(16,350);
(1 9)(2 15)(3 14)(4 10)(5 12)(6 16)(7 11)(8 13)
(2 8)(4 5)(10 12)(13 15)
(1 3)(2 4)(5 8)(6 7)(9 14)(10 15)(11 16)(12 13)
(1 7)(2 8)(3 6)(4 5)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(10 12)(13 15)
G:=sub<Sym(16)| (1,9)(2,15)(3,14)(4,10)(5,12)(6,16)(7,11)(8,13), (2,8)(4,5)(10,12)(13,15), (1,3)(2,4)(5,8)(6,7)(9,14)(10,15)(11,16)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (10,12)(13,15)>;
G:=Group( (1,9)(2,15)(3,14)(4,10)(5,12)(6,16)(7,11)(8,13), (2,8)(4,5)(10,12)(13,15), (1,3)(2,4)(5,8)(6,7)(9,14)(10,15)(11,16)(12,13), (1,7)(2,8)(3,6)(4,5)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (10,12)(13,15) );
G=PermutationGroup([[(1,9),(2,15),(3,14),(4,10),(5,12),(6,16),(7,11),(8,13)], [(2,8),(4,5),(10,12),(13,15)], [(1,3),(2,4),(5,8),(6,7),(9,14),(10,15),(11,16),(12,13)], [(1,7),(2,8),(3,6),(4,5),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(10,12),(13,15)]])
G:=TransitiveGroup(16,364);
(1 13)(2 14)(3 12)(4 11)(5 10)(6 9)(7 15)(8 16)
(1 6)(2 3)(4 7)(5 8)(9 13)(10 16)(11 15)(12 14)
(1 6)(2 5)(3 8)(4 7)(9 13)(10 14)(11 15)(12 16)
(1 7)(2 8)(3 5)(4 6)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 7)(2 8)(3 5)(4 6)(9 15)(10 14)(11 13)(12 16)
G:=sub<Sym(16)| (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,15)(8,16), (1,6)(2,3)(4,7)(5,8)(9,13)(10,16)(11,15)(12,14), (1,6)(2,5)(3,8)(4,7)(9,13)(10,14)(11,15)(12,16), (1,7)(2,8)(3,5)(4,6)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,8)(3,5)(4,6)(9,15)(10,14)(11,13)(12,16)>;
G:=Group( (1,13)(2,14)(3,12)(4,11)(5,10)(6,9)(7,15)(8,16), (1,6)(2,3)(4,7)(5,8)(9,13)(10,16)(11,15)(12,14), (1,6)(2,5)(3,8)(4,7)(9,13)(10,14)(11,15)(12,16), (1,7)(2,8)(3,5)(4,6)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,8)(3,5)(4,6)(9,15)(10,14)(11,13)(12,16) );
G=PermutationGroup([[(1,13),(2,14),(3,12),(4,11),(5,10),(6,9),(7,15),(8,16)], [(1,6),(2,3),(4,7),(5,8),(9,13),(10,16),(11,15),(12,14)], [(1,6),(2,5),(3,8),(4,7),(9,13),(10,14),(11,15),(12,16)], [(1,7),(2,8),(3,5),(4,6),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,7),(2,8),(3,5),(4,6),(9,15),(10,14),(11,13),(12,16)]])
G:=TransitiveGroup(16,373);
(1 12)(2 10)(3 15)(4 13)(5 9)(6 11)(7 14)(8 16)
(1 7)(2 8)(3 6)(4 5)(9 13)(10 16)(11 15)(12 14)
(1 3)(2 4)(5 8)(6 7)(9 16)(10 13)(11 14)(12 15)
(1 2)(3 4)(5 6)(7 8)(9 11)(10 12)(13 15)(14 16)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 7)(6 8)(9 12)(10 11)(13 14)(15 16)
G:=sub<Sym(16)| (1,12)(2,10)(3,15)(4,13)(5,9)(6,11)(7,14)(8,16), (1,7)(2,8)(3,6)(4,5)(9,13)(10,16)(11,15)(12,14), (1,3)(2,4)(5,8)(6,7)(9,16)(10,13)(11,14)(12,15), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,7)(6,8)(9,12)(10,11)(13,14)(15,16)>;
G:=Group( (1,12)(2,10)(3,15)(4,13)(5,9)(6,11)(7,14)(8,16), (1,7)(2,8)(3,6)(4,5)(9,13)(10,16)(11,15)(12,14), (1,3)(2,4)(5,8)(6,7)(9,16)(10,13)(11,14)(12,15), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,7)(6,8)(9,12)(10,11)(13,14)(15,16) );
G=PermutationGroup([[(1,12),(2,10),(3,15),(4,13),(5,9),(6,11),(7,14),(8,16)], [(1,7),(2,8),(3,6),(4,5),(9,13),(10,16),(11,15),(12,14)], [(1,3),(2,4),(5,8),(6,7),(9,16),(10,13),(11,14),(12,15)], [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12),(13,15),(14,16)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,7),(6,8),(9,12),(10,11),(13,14),(15,16)]])
G:=TransitiveGroup(16,392);
Matrix representation of C24⋊D4 ►in GL6(𝔽5)
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [0,3,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,4,0,0,0,0,0,3,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C24⋊D4 in GAP, Magma, Sage, TeX
C_2^4\rtimes D_4
% in TeX
G:=Group("C2^4:D4");
// GroupNames label
G:=SmallGroup(128,753);
// by ID
G=gap.SmallGroup(128,753);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,521,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export